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We investigate possible topological superconductivity in the Kondo-Kitaev model on the honey-
comb lattice, where the Kitaev spin liquid is coupled to conduction electrons via the Kondo coupling.
We use the self-consistent Abrikosov-fermion mean-field theory to map out the phase diagram. Upon
increasing the Kondo coupling, a first order transition occurs from the decoupled phase of spin liq-
uid and conduction electrons to a ferromagnetic topological superconductor of Class D with a single
chiral Majorana edge mode. This is followed by a second order transition into a paramagnetic
topological superconductor of Class DIII with a single helical Majorana edge mode. These findings
offer a novel route to topological superconductivity in the Kondo lattice system. We discuss the
connection between topological nature of the Kitaev spin liquid and topological superconductors
obtained in this model.

I. INTRODUCTION

Quantum spin liquid with Ising topological order can
be regarded as the infinite on-site repulsion limit of an un-
derlying superconductor1,2. In other words, it is a “pro-
jected” superconductor, where the electrons live in the
constrained Hilbert space with exactly one electron per
site and therefore with no charge transport. The fraction-
alized charge-neutral excitations in such systems have
built-in pairing correlation with emergent Ising gauge
structure. Hence, introducing charge fluctuations in such
a quantum spin liquid phase is a promising route to
obtain unconventional superconductivity. This may be
achieved by doping the spin liquid3–6, pushing the sys-
tem towards the metal-insulator transition7, and using
the Kondo-coupling to itinerant electrons8,9.

In this work, we explore the emergence of topologi-
cal superconductivity in the Kondo-Kitaev model, where
the Kitaev quantum spin liquid is Kondo-coupled to con-
duction electrons on the two-dimensional honeycomb lat-
tice, using the slave-particle self-consistent mean-field
theory. The Kitaev spin liquid is the ground state of
the exactly solvable Kitaev model of local moments with
bond-dependent Ising interactions on the honeycomb lat-
tice. It has Ising or Z2 topological order and supports
charge-neutral Majorana fermion excitations with Dirac
dispersion10. The purpose of this study is to understand
what kinds of unconventional superconductors are pos-
sible and how the topological nature of the Kitaev spin
liquid may be manifested in the resulting superconduct-
ing state.

The main finding of the current work is the
identification of two kinds of emergent topological
superconductors11, when the Kondo coupling is suffi-
ciently large. For this purpose, we focus on the model
where the Kitaev coupling to the local moments is signif-
icantly larger than the hopping amplitude or the band-
width of the conduction electrons. It is clear that one
obtains the decoupled Kitaev-spin-liquid and conduction-
electron system when the Kondo coupling is small, as

any short range interaction would be an irrelevant per-
turbation because of the vanishing density of states of
Majorana fermions in the Kitaev spin liquid. This state
is an example of the so-called FL∗ or fractionalized Fermi
liquid phase8,12. We find that, upon increasing the
Kondo coupling, the Kondo hybridization between lo-
cal moments and conduction electrons becomes finite via
a first order transition and the system enters a super-
conducting state. This superconducting state is a ferro-
magnetic (time-reversal breaking) topological supercon-
ductor (FM-TSC) of Class D in the ten-fold way clas-
sification scheme13, with a single chiral Majorana edge
mode. Upon increasing the Kondo interaction further,
there exists a second order phase transition to a param-
agnetic (time-reversal preserving) topological supercon-
ductor (PM-TSC) of Class DIII13, with a single helical
Majorana edge mode.

These results may be heuristically understood as fol-
lows. The Kitaev spin liquid is described by the pro-
jective symmetry group of Ising variety or Z2 invari-
ant gauge group, which is the origin of Ising topologi-
cal order10. The Dirac dispersion of fractionalized Ma-
jorana fermions is protected by projective time-reversal
and particle-hole symmetry, and hence the Majorana
representation of the Kitaev model can be cast as the
Class BDI Hamiltonian of the Majorana fermions10,14,15.
When time-reversal symmetry is broken, for example, by
an external magnetic field, the spectrum of Majorana
fermions becomes gapped and the ground state is a chi-
ral spin liquid with Chern number ±1, which can be de-
scribed by the Class D representation of the Majorana
fermions.

When the Kondo hybridization with conduction elec-
trons becomes finite, the local moments are mixed with
Ising-gauge-neutral conduction electrons so that the com-
posite system is no longer invariant under the Ising gauge
fluctuations of Majorana fermions. Thus, the emergent
Ising gauge structure (or the projective symmetry group
structure) is lost8,16 and the system may spontaneously
break the symmetries that protect the spin liquid in the
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decoupled limit17. This is the way that the FM-TSC
of Class D appears via time-reversal symmetry breaking
with finite Kondo hybridization. Notice that this FM-
TSC inherits the same topological property of the time-
reversal symmetry breaking chiral spin liquid mentioned
earlier. Since the small Kondo coupling is irrelevant, the
transition from FL∗ to FM-TSC occurs at a sufficiently
large Kondo coupling. When the Kondo coupling is fur-
ther increased, a continuous transition to a time-reversal
symmetry preserving PM-TSC occurs. All mean-field
amplitudes which break time-reversal symmetry vanish
in this state.

Our results presented here are somewhat different from
a previous study using a Majorana-based mean-field
approach9, where a non-topological gapless superconduc-
tor was found. The main reason for the different results
is that we keep all possible mean-field channels (92 real-
valued mean-field parameters) in our Abrikosov fermion
mean-field theory. Choosing a subset of these parameters
would correspond to the previous work.

A number of possible candidate topological supercon-
ductors such as Cu-doped Bi2Se3

18 and Sr2RuO4
19 have

been extensively studied, and recently several candidate
materials for the Kitaev spin liquid20–25 have been iden-
tified. It is our hope that our work would shed light
on a new route to topological superconductors, possibly
starting from such Kitaev-like materials.

The remainder of the paper is organized as follows.
In Sec. II, we introduce the Kondo-Kitaev model and
briefly summarize its symmetry properties. In Sec. III,
we construct the most general nearest-neighbour com-
plex fermion (Abrikosov fermion) mean-field Hamiltonian
that can reproduce the exact ground state energy and
excitation spectrum in the Kitaev limit. Sec. IV reviews
the projective symmetries of the Kitaev model and dis-
cusses how the projective time-reversal symmetry pro-
tects the gapless Majorana cones. In Sec. V, we present
our main result on topological superconductors via the
Kondo hybridization. We first examine which symme-
try is spontaneously broken with finite hybridization and
identify the symmetry class of the superconductors using
the ten-fold way classification of topological insulators
and superconductors13,26,27. From the bulk topological
invariant and the non-trivial edge mode, we analyze the
topological property of the hybridized topological super-
conductors and discuss the connection to the topological
nature of the Kitaev spin liquid. We summarize and con-
clude our work in Sec. VI.

II. THE KONDO-KITAEV MODEL

A. Model Hamiltonian

We start with the following Kondo lattice model on
the honeycomb lattice. The conduction electrons ciα are
described by the nearest-neighbour tight-binding model
with the chemical potential µ controlling the electron fill-
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FIG. 1. (a) Symmetries of the Kondo-Kitaev model: time-
revsersal T , lattice translations T1,2, mirror reflection m and
six-fold rotations C6. Red, green, and blue links denote the
x-, y-, z-links of the Kitaev interactions, respectively.
(b) Phase diagram with t/K = 0.2 and nc = 0.7. Strong
Kondo coupling can hybridize electrons and spins, and it
drives discontinuous transition from a fractionalized Fermi
liquid (FL*) into a ferromagnetic chiral topological super-
conductor (FM-TSC). Further increase of the Kondo cou-
pling yields continuous topological transition into a para-
magnetic topological superconductor (PM-TSC) with time-
reversal symmetry.

ing fraction nc = 〈c†iαciα〉. We consider the ferromag-
netic link-dependent Kitaev interaction between local

moments ~Si, which are coupled to conduction electrons
via the on-site antiferromagnetic Heisenberg Kondo cou-
pling. The model Hamiltonian is H = Hc+HK+HKondo

with

Hc = −t
∑
〈ij〉

(
c†iαcjα + c†jαciα

)
− µ

∑
i

c†iαciα , (1)

HK = −K
∑
a-link

Sai S
a
j , (2)

HKondo =
JK
2

∑
i

(c†iα~ταβciβ) · ~Si , (3)

where τa are the Pauli matrices. We are assuming the
Einstein summation convention for the repeated Greek
indices (e.g., α =↑, ↓), but not for the Latin indices.

In order to map out the phase diagram of the Kondo-
Kitaev model [FIG. 1 (b)], we focus on the case of
t/K = 0.2 and electron filling fraction nc = 0.7. We
have checked that other similar choices of t/K and nc
only change the positions of the phase boundaries, but
do not alter the nature of each of the phases.
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B. Symmetries

The Hamiltonian H is invariant under time-reversal,
T , and space group symmetries of the honeycomb lattice
including lattice translations T1,2 along a1,2, six-fold ro-
tations C6 around the centre of the hexagon, and mirror
reflection m [FIG. 1 (a)]. Due to the spin-orbit coupled
nature of the Kitaev interaction, SU(2) spin rotational
symmetry is explicitly broken. Thus, the spin should
be rotated accordingly upon mirror reflection or spatial
rotation5, i.e., under the symmetry transformation g

ciσ → (R†g)σσ′cg(i)σ′ , Sai → OabSbg(i), (4)

where

RT = −iτyK, KiK = −i (5)

RT1 = RT2 = τ0, (6)

Rm =
i√
2

(τx + τy), (7)

RC6 =
1

2
(τ0 + iτx + iτy + iτz), (8)

and

OT = −I3×3, (9)

OT1
= OT2

= I3×3, (10)

Om =

0 1 0
1 0 0
0 0 −1

 , (11)

OC6
=

0 0 1
1 0 0
0 1 0

 . (12)

III. ABRIKOSOV FERMION MEAN-FIELD
THEORY

A. The Kitaev model

1. Spin liquid channel

The Kitaev model HK can be solved exactly10 by rep-
resenting the spin operator Sai = i

2γ
a
i γ

0
i with the Ma-

jorana fermions {γµi , γνj } = 2δijδ
µν and the constraint

γxi γ
y
i γ

z
i γ

0
i = 1 at every site i. We first consider the Ma-

jorana fermion mean-field theory of HK :

HMF
K =

K

4

∑
a-link

〈iγai γaj 〉iγ0i γ0j + 〈iγ0i γ0j 〉iγai γaj

− 〈iγai γaj 〉〈iγ0i γ0j 〉. (13)

The exact spectrum of the gapless Majorana fermions
γ0 and the exact ground state energy E0 = −0.3936K
(per unit cell) can be reproduced with the self-consistent
mean-field parameters5,

〈iγai γaj 〉 = 1, 〈iγ0i γ0j 〉 = −0.524864. (14)

The Majorana fermion mean-field theory can be trans-
formed to the complex (Abrikosov) fermion mean-field
theory with the unitary transformation f↑ = 1

2

(
γ0 − iγz

)
and f↓ = 1

2 (γy − iγx). The change of basis reduces the

constraint γxi γ
y
i γ

z
i γ

0
i = 1 into f†iαfiα = 1 and the spin op-

erator into the familiar expression Sai = 1
2f
†
iατ

a
αβfiβ with

help of the one-spinon-per-site constraint28. The mean-
field Hamiltonian becomes the Bogoliubov-de Gennes
(BdG) Hamiltonian with the singlet and triplet hopping
(and pairing). Without loss of generality, let us focus
on the mean-field Hamiltonian for the z-link. For the
compact expression, we introduce the link variables

χ̂ij = f†iσfjσ, η̂ij = fiα(−iτy)αβfjβ , (15)

Êaij = f†iατ
a
αβfjβ , D̂a

ij = fiα(iτyτa)αβfjβ . (16)

Then HMF
K in terms of f fermions is written as

(
HMF
K

)
z

=
K

2

∑
z-link

(
χ∗ijχ̂ij + Ez∗ij Ê

z
ij

−Dx∗
ij D̂

x
ij −D

y∗
ij D̂

y
ij + h.c.

)
−
(
|χij |2 + |Ezij |2 − |Dx

ij |2 − |D
y
ij |

2
)
, (17)

where

χij = 〈χ̂ij〉 = Ezij = 〈Êzij〉 = − i
4

(
〈iγ0i γ0j 〉+ 〈iγzi γzj 〉

)
= −0.118784i, (18)

Dx
ij = 〈D̂x

ij〉 = −iDy
ij = −i〈D̂y

ij〉 = − i
4

(
〈iγ0i γ0j 〉 − 〈iγzi γzj 〉

)
= 0.381216i, (19)

and the other link variables have vanishing expectation
values. Note that the mean-field parameters (the expec-
tation values of the link variables) can be deduced not
only from Eq. (14) with the change of basis, but also
from the self-consistency conditions in Eqs. (18) and (19).
Because Eq. (17) is unitary equivalent to Eq. (13), it re-
produces the exact excitation spectrum and the ground
state energy by construction.

In an alternative route, since the ground state wave-
function of any mean-field Hamiltonian is a single Slater
determinant state, we can compute 〈HK〉 directly for the
ground state of a complex fermion mean-field theory after

we represent the spin as Sai = 1
2f
†
iατ

a
αβfiβ . Using Wick’s

theorem, we obtain

〈HK〉 = −K
4

∑
a-link

〈(f†iατ
a
αβfiβ)(f†jατ

a
αβfjβ)〉

=
∑
a-link

K

8

(
|χij |2 + |Eaij |2 − |Ebij |2 − |Ecij |2

)
+
K

8

(
|ηij |2 + |Da

ij |2 − |Db
ij |2 − |Dc

ij |2
)
, (20)

where only the spin liquid channels are considered (possi-
ble magnetic channels will be considered later). The vari-
ational wavefunction minimizing Eq. (20) can be found
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from the self-consistent solutions of the following mean-

field Hamiltonian H̃MF
K such that 〈H̃MF

K 〉 = 〈HK〉:

H̃MF
K =

∑
a-link

K

8

(
χ∗ijχ̂ij + Ea∗ij Ê

a
ij − Eb∗ij Êbij − Ec∗ij Êcij

)
+
K

8

(
η∗ij η̂ij +Da∗

ij D̂
a
ij −Db∗

ij D̂
b
ij −Dc∗

ij D̂
c
ij

)
+ h.c.

− K

8

(
|χij |2 + |Eaij |2 − |Ebij |2 − |Ecij |2

)
− K

8

(
|ηij |2 + |Da

ij |2 − |Db
ij |2 − |Dc

ij |2
)
. (21)

When we impose the self-consistency on Eq. (21), we
again find the same non-vanishing mean-field parame-
ters in Eqs. (18) and (19). This means that the ground
state of HMF

K , derived from Majorana fermion mean-field

theory, is also the ground state of the H̃MF
K minimizing

Eq. (20). However, 〈HK〉 turns out to be four times
smaller than the exact ground state energy. The band-
width of the gapless Majorana fermions with Eq. (21) is
also four times smaller. This factor of four difference is an
artifact of the naive complex fermion mean-field theory
in Eq. (21); because we are imposing the one-spinon-per-
site constraint only on average, the mean-field ground

state of H̃MF
K does not reproduce the exact ground state

energy. On the other hand, notice that the complex
fermion mean-field Hamiltonian Eq. (17) that is obtained
by performing the basis change on the Majorana mean-
field theory gives the exact ground state energy, namely

E0 = 〈HMF
K 〉 = 4〈H̃MF

K 〉 = 4〈HK〉.
To elaborate on this point, let us recall that the

Abrikosov fermion representation of the spin operator
can be rewritten in terms of the Majorana fermions as

Sai =
1

2
f†iατ

a
αβfiβ =

1

4

(
iγai γ

0
i − iγbi γci

)
. (22)

Because of the constraint γxi γ
y
i γ

z
i γ

0
i = 1, iγai γ

0
i = −iγbi γci

follows, and subsequently Eq. (22) is physically equiv-
alent to Sai = i

2γ
a
i γ

0
i after projection. However, the

ground state of HMF
K has finite correlations only for

〈iγ0i γ0j 〉 and 〈iγai γaj 〉 at the a-link, and the other correla-

tions 〈iγµi γνj 〉 vanish. Therefore, only the first term of

Sai S
a
j =

1

4

[
1

4
(iγai γ

0
i )(iγaj γ

0
j ) +

1

4
(iγbi γ

c
i )(iγ

b
i γ
c
i )

−1

4
(iγai γ

0
i )(iγbi γ

c
i )−

1

4
(iγbi γ

c
i )(iγ

a
i γ

0
i )

]
(23)

would contribute when 〈HK〉 is evaluated, and the re-
maining three terms give zero energy. However, the en-
ergy 〈HMF

K 〉 deduced from the Majorana fermion repre-
sentation can reproduce the exact ground state energy
because we fully utilized the equivalence iγai γ

0
i = −iγbi γci

before the mean-field decoupling is performed. Hence,
the coefficient of HMF

K in Eq. (17) is four times larger

than the overall coefficient of H̃MF
K in Eq. (21).

In short, if we use the mean-field Hamiltonian H̃MF
K

derived directly from the Abrikosov fermion represen-

tation and evaluate 〈HK〉 = 〈H̃MF
K 〉, the energy from

the spin liquid channel would be four times smaller than
the exact ground state energy. On the other hand, the
exact ground state energy can be obtained from the
Majorana fermion mean-field theory in Eq. (13) or the
basis-transformed Abrikosov fermion representation in
Eq. (17).

The difference in ground state energy between two
representations is a result of the redundancy in parton
(or slave-particle) representations of the same physical
Hamiltonian. In general, two-spin interactions are rep-
resented as four-parton interactions and the constraint
allows one to rewrite the quartic interactions in various
different forms. Mean-field decoupling of such interac-
tions leads to different representations of the mean-field
Hamiltonian. When the constraint is exactly imposed, all
of these representations give the same energy for the same
ground state. At the mean-field level, however, they may
give different energies for the same ground state. Here,
in order to reproduce the correct ground state energy in
the Kitaev limit, we choose the unitary-rotated form of
the Majorana fermion mean-field theory HMF

K instead of

the naive Abrikosov mean-field theory H̃MF
K . We also

keep the maximum possible number of mean-field chan-
nels for subsequent analyses. Taking into account the
overall factor four difference mentioned earlier, this is

equivalent to using H̃MF
4K with the renormalized Kitaev

coupling, K → 4K.

2. Magnetic channel

Although the pure Kitaev model has the non-magnetic,
spin liquid ground state, sufficiently large coupling be-
tween the itinerant electrons and local moments may al-
low possible magnetic order in the Kondo-Kitaev model.
In the Majorana representation of the spin, Sai = i

2γ
a
i γ

0
i ,

the magnetic channel can be written as

Hmag
K = −K

4

∑
a-link

〈iγai γ0i 〉iγaj γ0j + 〈iγaj γ0j 〉iγai γ0i

− 〈iγai γ0i 〉〈iγaj γ0j 〉. (24)

With f↑ = 1
2

(
γ0 − iγz

)
and f↓ = 1

2 (γy − iγx), we can
rewrite Eq. (24) in terms of the complex fermions. To-
gether with the one-spinon-per-site constraint, the mag-
netic channel in terms of f fermions is

Hmag
K = −K

2

∑
a-link

[
sai (f†jατ

a
αβfjβ) + saj (f†iατ

a
αβfiβ)

]
+Ksai s

a
j , (25)

where sai = 1
2 〈f
†
iατ

a
αβfiβ〉.

In the case of magnetic channels, the one-spinon-
per-site constraint on average is sufficient to introduce
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the magnetic order parameters consistently. Because

〈f†iαfiα〉 = 1 and 〈fi↑fi↓〉 = 0 already imply 〈iγai γ0i 〉 =
−〈iγbi γci 〉, every physically equivalent magnetic order pa-
rameter contributes equally to the energy, e.g., 〈Sai 〉 =
〈 14
(
iγai γ

0
i − iγbi γci

)
〉 = 〈 i2γ

a
i γ

0
i 〉. Therefore we can safely

introduce the magnetic channels with any representation
of the spin; no enhancement or suppression of the mag-
netic channel is necessary in order to match the Majorana
fermion mean-field theory and the Abrikosov fermion
mean-field theory.

To sum up, the full mean-field Hamiltonian for the
Kitaev interaction is given by

Hf =
∑
a-link

K

2

(
χ∗ijχ̂ij + Ea∗ij Ê

a
ij − Eb∗ij Êbij − Ec∗ij Êcij

)
+
K

2

(
η∗ij η̂ij +Da∗

ij D̂
a
ij −Db∗

ij D̂
b
ij −Dc∗

ij D̂
c
ij

)
+ h.c.

− K

2

[
sai (f†jατ

a
αβfjβ) + saj (f†iατ

a
αβfiβ)

]
− K

2

(
|χij |2 + |Eaij |2 − |Ebij |2 − |Ecij |2

)
− K

2

(
|ηij |2 + |Da

ij |2 − |Db
ij |2 − |Dc

ij |2
)

+Ksai s
a
j

+
∑
i

[(axi − ia
y
i )fi↓fi↑ + h.c.] + azi (f

†
iσfiσ − 1) (26)

with the Lagrange multipliers ax,y,zi imposing the con-
straints on average. We reiterate that this Abrikosov
fermion mean-field Hamiltonian is obtained by perform-
ing the unitary rotation on the Majorana fermion mean-
field Hamiltonian with both spin liquid and magnetic
channels. In comparison to the naive mean-field decou-
pling scheme of the Abrikosov fermion representation,
this Hamiltonian has four times larger weight29,30 in the
spin liquid channels. This mean-field Hamiltonian gives
the spin liquid ground state and the correct ground state
energy for the pure Kitaev model. On the other hand,
if the naive decoupling scheme in the Abrikosov fermion
representation were used, the spin liquid channels would
have been under-estimated and the self-consistent mean-
field theory would conclude that a magnetically ordered
state is energetically more favourable than the spin liquid
state for the pure Kitaev model. Thus we will use the
mean-field theory in Eq.(26), which is consistent with the
exact solution, for the subsequent analysis.

B. The Kondo coupling

For the Kondo coupling term, we consider the most
general mean-field Hamiltonian based on the Abrikosov

fermion representation of the spin, Sai = 1
2f
†
iατ

a
αβfiβ . The

mean-field theory of the Kondo effect based on Abrikosov
fermions reproduces exactly the exponential dependence
of the Kondo temperature as function of the Kondo cou-
pling JK

31. After we represent the spin operator in terms
of f fermions, we can compute the expectation value of

HKondo using Wick’s theorem. Our mean-field Hamilto-
nian Hcf is chosen such that 〈Hcf 〉 = 〈HKondo〉. Then,
we have

Hcf =
∑
i

∑
a=x,y,z

JK
8

(
Aa∗i Â

a
i +Ba∗i B̂

a
i

)
+ h.c.

−
∑
i

3JK
8

(
A0∗
i Â

0
i +B0∗

i B̂
0
i

)
+ h.c.

+
∑
i

JK
2

[
~mi · (f†iα~ταβfiβ) + ~si · (c†iα~ταβciβ)

]
−
∑
i

∑
a=x,y,z

JK
8

(
|Aai |2 + |Bai |2

)
+
∑
i

3JK
8

(
|A0
i |2 + |B0

i |2
)
−
∑
i

JK ~mi · ~si, (27)

where

A0
i = 〈Â0

i 〉 = 〈c†iσfiσ〉, (28)

Aai = 〈Âai 〉 = 〈c†iατ
a
αβfiβ〉, (29)

B0
i = 〈B̂0

i 〉 = 〈ciα(−iτy)αβfiβ〉, (30)

Bai = 〈B̂ai 〉 = 〈ciα(iτyτa)αβfiβ〉, (31)

ma
i =

1

2
〈c†iατ

a
αβciβ〉, sai =

1

2
〈f†iατ

a
αβfiβ〉. (32)

C. Projective symmetry group

When we represent the quantum spin ~Si with the frac-
tionalized degrees of freedom fiσ, we enlarge the dimen-
sion of the Hilbert space from 2Nsite to 4Nsite . So the spin
operator can be faithfully represented with partons only

if we carefully take account the constraint, f†iαfiα = 1.
Such constrained dynamics of the strongly correlated sys-
tem naturally introduces the gauge redundancy to the
interacting parton Hamiltonian32,33.

With a matrix of fermion operators5,34,35,

Fi =

(
fi↑ f†i↓

fi↓ −f†i↑,

)
, (33)

we can write the spin operator as

Sai =
1

4
Tr(F †i τ

aFi) (34)

and the one-spinon-per-site constraint as

Ka
i =

1

2
Tr(Fiτ

aF †i ) = 0. (35)

While the left SU(2) rotation Fi → R†Fi leads to usual
SO(3) spin rotation Sai → OabSbi generated by the spin
itself, the right SU(2) rotation Fi → FiWi does not
change the spin operator due to cyclic property of trace.
Therefore the parton Hamiltonian has the SU(2) gauge
redundancy Wi generated by Ka

i .
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Because of this SU(2) gauge redundancy, there are
many seemingly distinct but gauge-equivalent mean-field
Hamiltonians. To be specific, consider Hf and Hcf in
terms of matrices of fermion operators:

Hf =
∑
ij

Tr
(
ταFiU

α
ijF
†
j

)
, (36)

Hcf =
∑
i

Tr
(
ταCiV

α
i F
†
i

)
, (37)

where Ci is a matrix of ciα fermions analogous to
Eq. (33), and Uαij and V αi for α = 0, x, y, z are matri-
ces of the mean-field parameters. (Precise expressions
for Uαij and V αi are in Appendix A.) Under the gauge
transformations Fi → FiWi,

Uαij →W †i U
α
ijWj , (38)

V αi → V αi Wi (39)

give the gauge-equivalent mean-field Hamiltonian.
Since one physical Hamiltonian corresponds to many

gauge-equivalent mean-field Hamiltonians, the symme-
try transformations do not need to preserve the struc-
ture of individual mean-field Hamiltonians. As long as a
transformation maps one mean-field Hamiltonian to the
other gauge-equivalent one, the transformation is a sym-
metry. So the mean-field Hamiltonian is invariant under
the symmetry transformations followed by the associated
gauge transformations. Therefore the symmetry trans-
formation g acting on the parton has the form

Fi
Ggg−−→ R†gFg(i)Gg(g(i)), (40)

where Ug and Gg(i) are the SU(2) spin rotation and the
gauge transformation associated with the symmetry g,
respectively. This group of symmetry transformations
augmented with the gauge transformations is called the
projective symmetry group (PSG)36.

An important subset of the PSG is the set of identity
transformations called the invariant gauge group (IGG).
This set of pure gauge transformations characterize the
emergent gauge symmetry of the low-energy physics. For
example, the Z2 spin liquid such as the Kitaev spin liquid
has the invariant gauge group Z2 = {τ0,−τ0} while the
trivial phase has the IGG = {τ0}.

Because of this low-energy gauge redundancy, any non-
trivial sequence of symmetry operations equivalent to the
identity, e.g., g = g1·g2·...·gn = e, can leave the parton in-
variant up to some element of the invariant gauge group:

Fi
Ggg−−→ Fiηg where ηg ∈ IGG. If the sequence g leaves

the non-trivial pure gauge transformation ηg 6= τ0, those
symmetries are said to be non-trivial projective symme-
tries. These non-trivial projective symmetries character-
ize the quantum order of the ground state.

IV. FRACTIONALIZED FERMI LIQUID

In the absence of the Kondo coupling, the system is
the exactly solvable Kitaev model with decoupled free

E

FIG. 2. Spectrum of the fractionalized Fermi liquid (FL*)
with t/K = 0.2, nc = 0.7. The Majorana fermions (pur-
ple) fractionalized from the interacting spins coexist with the
itinerant electrons (yellow) having “small” Fermi surface.

electrons. The spins are fractionalized into the Majorana
fermions10, and only itinerant electrons participate in the
formation of the Fermi surface.

Because the Kitaev spin liquid is stable under weak
local perturbations, the spins remain fractionalized even
if the itinerant electrons and the spins are weakly cou-
pled. With small enough Kondo coupling JK , the self-
consistent mean-field theory gives vanishing hybridiza-
tion amplitudes and finite f fermion hopping and pair-
ing amplitudes consistent with the exact solution of the
Kitaev model15,

χx = χy = χz = Dx
x = −iDy

y = Ezz = −0.118784i,

Ezx = −iDy
x = Ezy = Dx

y = Dx
z = −iDy

z = 0.381216i,

where the subscript denotes the type of the link, e.g.,
Exz = Exij for 〈ij〉 ∈ z-link. The Fermi surface remains
“small” in the sense that its size is determined solely from
the electron filling fraction, nc (FIG. 2).

This fractionalized Fermi liquid (FL*) phase does not
break any symmetry, and also the projective symmetry
properties of the interacting spins are preserved8. The
quantum order of the Kitaev spin liquid persists in spite
of the weak Kondo coupling, and the Majorana fermions
respect the symmetries up to some gauge transforma-
tions.

The projective symmetry group of the Kitaev spin liq-
uid can be deduced from the distinct dynamic properties
of the Majorana fermions γ0 and γx,y,z. Because the Ki-
taev spin liquid has well-separated static gauge degrees
of freedom uij = iγai γ

a
j and the gapless dynamic matter

field γ0i , the symmetry transformations should not mix γ0

with the other γx,y,z fermions. The projective extension
of the symmetry group {T , T1,2, C6,m} with the follow-
ing gauge transformations is consistent with this unique



7

property of the Kitaev spin liquid5:

GT (s = 0) = −GT (s = 1) = iτy, (41)

GT1
(i) = GT2

(i) = τ0, (42)

Gm(s = 0) = −Gm(s = 1) = Rm, (43)

GC6
(s = 0) = −GC6

(s = 1) = RC6
. (44)

where s = 0, 1 are two different sublattice sites of the hon-
eycomb lattice, and Rm and RC6

are defined in Eqs. (7)
and (8).

While we can gauge away the Gm of the mirror reflec-
tion, no SU(2) gauge transformation can make GT and
GC6

to be the identity matrix. Because both T 2 = e and
(C6)6 = e leave the non-trivial Z2 IGG element after the

projective symmetry transformations, Fi
(GT T )2−−−−−→ −Fi

and Fi
(GC6

C6)
6

−−−−−−→ −Fi, the Kitaev spin liquid has the
non-trivial projective time-reversal T and C6 rotation
symmetries.

An important consequence of the non-trivial projective
symmetry is the robust gapless Dirac cone. The projec-

tive time-reversal symmetry Fi
GT T−−−→ KiτyFiGT (i)K re-

quires the mean-field parameter matrix Uαij in Eq. (36)

to satisfy35

∑
ij

Tr
[
(τyτα∗τy)FiGT (i)τy

(
τyUα∗ij τ

y
)
τyGT (j)†F †j

]
= −

∑
ij

Tr
[
ταFi

(
GT (i)τyUαijτ

yGT (j)†
)
F †j

]
= Hf .

(45)

Therefore

GT (i)(−iτy)Uαij(iτ
y)GT (j)† = −Uαij . (46)

With the gauge transformations GT (i) in Eq. (41), the
projective time-reversal symmetry does not allow any
hopping or pairing of f fermions between the same sub-
lattice sites. Hence, the mean-field Hamiltonian gains
the sublattice site symmetry (or chiral symmetry) and
belongs to the BDI class of the ten-fold way, where
the codimension p = d − dFS = 2 Fermi surface is
topologically protected27,37. Therefore small symmetry-
preserving perturbations cannot gap out the Dirac cones
in two spatial dimensions.

V. TOPOLOGICAL SUPERCONDUCTORS
WITH THE KONDO HYBRIDIZATION

When the electron-spin interaction JK is strong
enough, the electrons and the spins begin to hybridize.
Because of the finite pairing amplitude of the f fermions,
the Kondo hybridization naturally induces the pairing
of the c fermions which results in the superconducting
phase8,16. The self-consistent mean-field theory shows
that there are two phase transitions to the superconduc-
tors as we increase the Kondo coupling JK : discontinuous

(a)

(b)

-π - π
2 0 π

2 π
-0.1

-0.05

0.

0.05

0.1

E

E

k

FIG. 3. Ferromagnetic chiral topological superconductor with
t/K = 0.2, JK/K = 2, and nc = 0.7. (a) The excitation spec-
trum is fully gapped and has the total spectral Chern number,
ChN = 1. (b) Because of the non-trivial bulk topology, a sta-
ble chiral Majorana mode exists at the boundary.

phase transition from the Z2 FL* to a ferromagnetic chi-
ral topological superconductor (FM-TSC), and continu-
ous topological phase transition from the FM-TSC to a
paramagnetic Z2 topological superconductor (PM-TSC).
In this section, we discuss the nature of these hybridized
superconducting phases.

A. Ferromagnetic topological superconductor

If the electron-spinon pair is condensed under strong

Kondo coupling, e.g., 〈Â0
i 〉 = 〈c†iαfiα〉 6= 0, the fractional-

ized Fermi liquid phase is destabilized and becomes a fer-
romagnetic topological superconductor (FM-TSC). Be-
cause Hcf is not invariant under the global sign flip of the
f fermions, the invariant gauge group of the f fermions
is reduced from Z2 = {τ0,−τ0} to the trivial group {τ0}.
In other words, the superconducting phase no longer pos-
sesses the emergent Z2 gauge symmetry for the spins8,16.
Therefore the notion of the quantum order/non-trivial
projective symmetry no longer exists in this hybridized
superconducting phase.

The breakdown of the PSG has important conse-
quences for the symmetry properties of the FM-TSC
phase. Since the FL* phase has the non-trivial projec-
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tive time-reversal T and C6 rotation symmetry, the lack
of the gauge structure may lead to the spontaneous sym-
metry breaking17 of T and C6. Because the mean-field
parameters for hopping and pairing change discontinu-
ously right after the phase transition, the self-consistent
mean-field parameters are adjusted as

χx = χy = χz ∈ R, (47)

ηx = ηy = ηz ∈ R, (48)

Exx = Eyy = Ezz ∈ R, (49)

Eyx = Ez∗x = Ezy = Ex∗y = Exz = Ey∗z ∈ C, (50)

Dx
x = Dy

y = Dz
z ∈ R, (51)

Dy
x = Dz∗

x = Dz
y = Dx∗

y = Dx
z = Dy∗

z ∈ C, (52)

A0
s=0,1 ∈ R, B0

s=0,1 ∈ R, (53)

Axs=0,1 = Ays=0,1 = Azs=0,1 ∈ R, (54)

Bxs=0,1 = Bys=0,1 = Bzs=0,1 ∈ R, (55)

such that the hybridized superconducting phase could
preserve the C3 rotation symmetry; HMF = Hc + Hf +

Hcf is invariant under Fi → (R†C6
)2FC3(i) and Ci →

CC3(i). In general, the self-consistent mean-field param-
eters do not have the structure of Eqs. (47)–(55) be-

cause of the SU(2) gauge redundancy Fi
g−→ R†gFg(i)

Gg−−→
R†gFg(i)Gg(g(i)). However, we can always choose the

gauge such that Gg(i) = τ0 for every symmetry g be-
cause the finite Kondo hybridization amplitudes do not
allow any non-trivial projective symmetry38. Note that
non-trivial projective symmetries T and C6 prevent such
gauge choice for the FL* phase. All discussion from now
on assumes the gauge such that Gg(i) = τ0, which gives
Eqs. (47)–(55).

As we advertised earlier, the pairing correlation of f
fermions induces the pairing of the itinerant electrons.
The electron pairing is purely triplet, and its amplitudes
∆µ
ν = 〈ciα(iτyτµ)αβcjβ〉 at the 〈ij〉 ∈ ν-link are

∆a
a ∈ R, ∆b

a = ∆c∗
a ∈ C, (56)

∆x,y,z
x = ∆y,z,x

y = ∆z,x,y
z , (57)

where a, b, c are the cyclic indices for x, y, z. If the state
were time-reversal symmetric, the triplet pairing ampli-
tudes must be purely imaginary. Therefore the real com-
ponent of ∆µ

ij must be a consequence of spontaneously
broken time-reversal symmetry with ferromagnetic order,

m = mx
s=0,1 = ±my

s=0,1 = ±mz
s=0,1, (58)

s = sxs=0,1 = ±sys=0,1 = ±szs=0,1. (59)

Depending on the sign of the x, y, z components of the
magnetic order parameters sµi , the PM-TSC state is 23 =
8 fold degenerate. Without loss of generality, we will
focus on the state with sxi = syi = szi = s and mx

i =
my
i = mz

i = m. [Eqs. (47)–(55) are consistent with this
direction.]

When time-reversal symmetry is broken, the same
sublattice site pairing makes the Kitaev spin liquid be-
come the non-Abelian topological phase with the spec-
tral Chern number ±110. The question arises whether
the hybridized superconductor also inherits this topo-
logical property of the parent spin liquid. The self-
consistent mean-field theory shows that the hybridized
superconductor is indeed a chiral topological supercon-
ductor (class D) with the spectral Chern number, ChN
= 1. A chiral Majorana mode at the edge manifests
the non-trivial bulk topology and spontaneously bro-
ken time-reversal symmetry [FIG. 3 (b)]. Based on Ki-
taev’s 16 fold way classification of two dimensional chiral
superconductors10, the vortex excitation of this chiral su-
perconductor with odd Chern number is the Ising anyon
with non-Abelian braiding statistics because of a sin-
gle unpaired Majorana mode inside the vortex core39,40.
While the FM-TSC no longer has the Ising gauge struc-
ture of the chiral spin liquid phase of the Kitaev model,
nevertheless the nature of the excitations shows a sur-
prising similarity.

B. Paramagnetic topological superconductor

When the Kondo coupling JK becomes much stronger
than the Kitaev interaction, the magnetic order parame-
ters and all time-reversal symmetry breaking mean-field
parameters continuously decrease to zero [FIG. 4 (b)].
At the critical point, the mean-field spectrum becomes
gapless at the Γ point. Through this continuous phase
transition, our system becomes a paramagnetic topologi-
cal superconductor (PM-TSC). The ferromagnetic order
is completely suppressed, and the triplet pairing ampli-
tudes of the electrons at a-links are purely imaginary:

∆a
a = 0, i∆b

a = −i∆c
a ∈ R, (60)

∆x,y,z
x = ∆y,z,x

y = ∆z,x,y
z . (61)

Hence, the PM-TSC is a time-reversal symmetric super-
conductor, which belongs to the class DIII of the ten-fold
way classification.

In two spatial dimensions, a class DIII superconductor
can be a Z2 topological superconductor13,27. Indeed, our
paramagnetic fully-gapped superconducting phase has a
non-trivial bulk topology which results in a robust sin-
gle gapless helical edge mode [FIG. 5 (b)]. Because
the Kitaev spin liquid’s stable Majorana cones are the
consequence of both the emergent Z2 gauge symmetry
and time-reversal symmetry, the system can have fully
gapped spectrum just by destroying the gauge structure
by the Kondo hybridization.

In addition to the topological properties, one notable
feature of the PM-TSC phase is its symmetry. Includ-
ing time-reversal symmetry, the PM-TSC recovers every
space group symmetry of the physical Hamiltonian with
the exception of inversion symmetry. To examine mirror
reflection and inversion symmetry, we need to investigate
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FIG. 4. Self-consistent mean-field parameters for the hy-
bridized superconducting phases (t/K = 0.2, nc = 0.7).
Because of the C3 symmetry, only the mean-field parame-
ters for the x-links are shown. (a) The mean-field param-
eters consistent with time-reversal symmetry are a contin-
uous function of JK . (b) Time-reversal symmetry break-
ing mean-field parameters such as the real part of triplet
hopping(E)/pairing(D)/hybridization(A,B) and the mag-
netic order parameters (m, s) continuously go to zero at the
critical point, (JK)c/K = 2.9.

the structure of the self-consistent mean-field parame-
ters. The non-vanishing mean-field parameters for the
PM-TSC are

χx = χy = χz ∈ R, (62)

ηx = ηy = ηz ∈ R, (63)

iEyx = −iEzx = iEzy = −iExy = iExz = −iEyz ∈ R, (64)

iDy
x = −iDz

x = iDz
y = −iDx

y = iDx
z = −iDy

z ∈ R, (65)

A0
s=0 = A0

s=1 = A ∈ R, (66)

B0
s=0 = B0

s=1 = B ∈ R. (67)

Because the singlet hybridization amplitudes A and B
are independent of the sublattice sites, Hcf is invariant
under both mirror reflection and inversion. So the only
possible source of the symmetry breaking is Hf . If Hf

respects mirror reflection symmetry, then

Hf = Tr
(
ταFiU

α
ijF
†
j

)
= Tr

(
Rmτ

αR†mFm(i)U
α
ijF
†
m(j)

)
⇒ Uxz = Uy†z , Uzz = −Uz†z , Ux,yx = Uy,x†y , Uzx = −Uz†y .

(68)

With the mean-field parameter matrices in the Appendix
A, it is not difficult to verify that the self-consistent
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FIG. 5. Paramagnetic topological superconductor (t/K =
0.2, JK/K = 3, nc = 0.7) (a) The bulk excitation spectrum
is fully gapped over the entire Brillouin zone, and all bands
are doubly degenerate due to time-reversal symmetry and
inversion-like discrete symmetry. (b) A robust single helical
Majorana edge mode manifests the non-trivial bulk topology
and recovered time-reversal symmetry.

mean-field parameters for the PM-TSC satisfy Eq. (68).
Therefore, the paramagnetic superconductor respects
mirror symmetry.

Unlike mirror reflection, physical inversion (or C2 ro-
tation around the centre of the hexagon) turns out to be
not a symmetry of the PM-TSC. Because of translation
symmetry, the mean-field parameters for the nearest-
neighbour link depend only on the sublattice sites s = 0, 1
and the type of the link. Hence, inversion on the lat-
tice is equivalent to the change of the sublattice sites

Uij = Us=0,s=1
C2−−→ Ui′j′ = Us=1,s=0. So the usual phys-

ical inversion demands Uνµ = Uν†µ , which is violated with
our mean-field parameters in Eqs. (64) and (65).

Even though the lattice inversion symmetry is broken,
the nearest-neighbour mean-field Hamiltonian respecting
translation, mirror reflection, and C3 rotation symmetry
has hidden inversion-like discrete symmetry, P41. First,
let’s see how T1,2, m, and C3 constrain the structure of
the nearest-neighbour mean-field Hamiltonian. Then we
will read out the hidden symmetry P from the mean-field
ansatz constrained by those three symmetries.

For a translationally invariant mean-field ansatz Uαij ,
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mirror reflection constrains the z-links which contain the
mirror plane as Uxz = Uy†z and Uzz = −Uz†z [Eq. (68)].
Because of C3 rotation symmetry, we have three mirror
planes perpendicular to each bond of the honeycomb lat-
tice. Thus, the constraints on the mean-field parameters
on the z-links in Eq. (68) can be extended to all three
types of links:

U ba = U c†a , U
a
a = −Ua†a . (69)

The usual physical inversion is not a symmetry because
it does not flip the spins. However, if we act the usual
physical inversion (C2) to the lattice and mirror-reflect
the spins, i.e.,

Fi
P−→ R†mFC2(i), (70)

then the mean-field Hamiltonian for the PM-TSC is in-
variant. In other words, when the mean-field ansatz sat-
isfies Eq. (69), we get inversion-like discrete symmetry
P for free because Eq. (69) is necessary and sufficient
condition for

Hf = Tr
(
ταFiU

α
ijF
†
j

)
P−→ Tr

(
Rmτ

αR†mFC2(i)U
α
ijF
†
C2(j)

)
= Hf . (71)

Since P transforms the lattice sites as inversion symme-
try (C2), P relates the excitation of momentum k and
the excitation of momentum −k in Fourier space.

Because of this inversion-like discrete symmetry P
and time-reversal symmetry T , each band of the ex-
citation spectrum is doubly degenerate [FIG. 5 (a)].
Time-reversal symmetry implies Ek,s = E−k,s while the
inversion-like discrete symmetry implies Ek,s = E−k,1−s.
Therefore we have Kramer’s degeneracy Ek,s = Ek,1−s
with antiunitary symmetry PT at each k. Note that the
two-fold degeneracy originates not from the spins, but
from the two sublattice sites s = 0, 1.

VI. CONCLUSION

In this work, we identify and characterize emergent
quantum phases in the Kondo-Kitaev model on the hon-
eycomb lattice. The self-consistent Abrikosov fermion
mean-field theory gives three distinct phases as the
Kondo coupling is increased: the fractionalized Fermi liq-
uid (FL*), where the Kitaev spin liquid and conduction
electrons remain decoupled, the ferromagnetic topolog-
ical superconductor (FM-TSC) of Class D with broken
time-reversal symmetry, and the paramagnetic topolog-
ical superconductor (PM-TSC) of Class DIII with pre-
served time-reversal symmetry.

Because the Kitaev spin liquid respects time-reversal
symmetry (T ) projectively, the discontinuous transi-
tion from the FL* to the FM-TSC accompanies sponta-
neously broken time-reversal symmetry. This T -broken
hybridized superconductor has finite ferromagnetic order

and fully gapped spectrum with non-trivial bulk topol-
ogy. It is reminiscent of the phase transition from the
Kitaev spin liquid to a chiral spin liquid, which occurs
when an external magnetic field is applied. In fact, one
can see that the FM-TSC inherits the topological proper-
ties of the chiral spin liquid, namely the unit Chern num-
ber and a single chiral Majorana edge mode, albeit the
time-reversal symmetry is spontaneously broken without
any explicit T -breaking perturbation.

Further increase of the Kondo coupling allows a contin-
uous transition to the time-reversal symmetric PM-TSC,
where the ferromagnetic order and every T -breaking
mean-field channel goes to zero continuously. This topo-
logical superconductor is characterized by Z2 bulk topo-
logical invariant and a single helical edge mode.

In the current work, we focus on the possibility of topo-
logical superconductivity in the Kondo-Kitaev system.
For this purpose, we presented the results of t/K = 0.2
and varied strength of JK as well as the conduction elec-
tron filling nc = 0.7. While we checked that similar val-
ues of t/K and nc lead to qualitatively the same phase
diagram, we have not explored all the possible cases. Ob-
taining the full phase diagram as a function of different
conduction electron filling factors and different relative
strength between t,K, JK would be an interesting, but
time-consuming, exercise for future studies.
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Appendix A: Mean-field parameter matrix

With the matrix of the fermion operators,

Ci =

(
ci↑ c†i↓

ci↓ −c†i↑,

)
, Fi =

(
fi↑ f†i↓

fi↓ −f†i↑,

)
, (A1)

any quadratic Hamiltonian can be written in terms of Ci
and Fi. So we reexpress Hf and Hcf as

Hf =
∑
ij

Tr
(
ταFiU

α
ijF
†
j

)
, (A2)

Hcf =
∑
i

Tr
(
ταCiV

α
i F
†
i

)
. (A3)

Because the Hamiltonian must be Hermitian, the ma-
trix of the mean-field parameters Uαij and V αi should have
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the following structure:

U0
ij = iτ0(u0ij)0 +

∑
l=x,y,z

τ l(u0ij)l, (A4)

Ux,y,zij = τ0(ux,y,zij )0 +
∑

l=x,y,z

iτ l(ux,y,zij )l, (A5)

V 0
i = iτ0(v0i )0 +

∑
l=x,y,z

τ l(v0i )l, (A6)

V x,y,zi = τ0(vx,y,zi )0 +
∑

l=x,y,z

iτ l(vx,y,zi )l, (A7)

where (uµij)ν and (vµi )ν are all real numbers.

For the 〈ij〉 ∈ a-link, the mean-field parameter matrix
Uαij ≡ Uαa are

U0
a = −K

2

(
χa η∗a
ηa −χ∗a

)
, Uaa = −K

2

(
Eaa Da∗

a

−Da
a Ea∗a

)
,

U ba =
K

2

(
Eba Db∗

a

−Db
a Eb∗a

)
, U ca =

K

2

(
Eca Dc∗

a

−Dc
a Ec∗a

)
. (A8)

The on-site terms (i = j) such as the Lagrange multipli-
ers ax,y,zi and the magnetic order parameter sx,y,zi are

U0
i = −

(
azi axi − ia

y
i

axi + iayi −azi

)
, (A9)

Ux,y,zi =
K

2

(
sx,y,zj 0

0 sx,y,zj

)
− v

2

(
mx,y,z
i 0
0 mx,y,z

i

)
(A10)

Similarly, hybridization amplitudes can be organized into
the matrix V αi :

V 0
i = −3JK

8

(
A0
i B0∗

i

B0
i −A0∗

i

)
, (A11)

V x,y,zi =
JK
8

(
Ax,y,zi Bx,y,z∗i
−Bx,y,zi Ax,y,z∗i

)
. (A12)
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